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A Simple Correction for Multiple Testing for Single-Nucleotide
Polymorphisms in Linkage Disequilibrium with Each Other
Dale R. Nyholt
Genetic Epidemiology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland, Australia

In this report, we describe a simple correction for multiple testing of single-nucleotide polymorphisms (SNPs) in
linkage disequilibrium (LD) with each other, on the basis of the spectral decomposition (SpD) of matrices of pairwise
LD between SNPs. This method provides a useful alternative to more computationally intensive permutation tests.
A user-friendly interface (SNPSpD) for performing this correction is available online (http://genepi.qimr.edu.au/
general/daleN/SNPSpD/). Additionally, output from SNPSpD includes eigenvalues, principal-component coeffi-
cients, and factor “loadings” after varimax rotation, enabling the selection of a subset of SNPs that optimize the
information in a genomic region.

SNPs in disease-related genes are increasingly being used
as candidates in the search for causative variations. Both
theoretical (Long and Langley 1999; Service et al. 1999;
Zollner and von Haeseler 2000; Akey et al. 2001; Bader
2001; Morris and Kaplan 2002) and empirical studies
(Clark et al. 1998; Terwilliger and Weiss 1998; Escamilla
et al. 1999; Martin et al. 2000) have produced contra-
dictory results on whether haplotypes of two or more
SNPs provide greater power than individual SNPs to find
useful linkage disequilibrium (LD) between a causative
mutation and linked marker loci. Moreover, variability in
LD across the genome, the large dependence of the
strength of association on allele-frequency differences be-
tween the disease variant and the SNP (e.g., Ohashi and
Tokunaga 2001), and questions regarding the suitability
of the “common disease common variant” (CDCV) hy-
pothesis (i.e., depending on the ascertainment method)
(Pritchard and Cox 2002) all suggest that an initial in-
vestigation of a candidate gene or interval should test
many SNPs individually for association. However, unless
the selected SNPs are all in complete LD with each other,
such multiple testing will increase the false-positive (type
I error) rate under nominal significance thresholds (e.g.,
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). On the other hand, when background LDa p 0.05
exists between SNPs but they are assumed to be com-
pletely independent, then the Šidák correction—which is
approximated by the popular Bonferroni correction (Ši-
dák 1968, 1971)—would markedly overcorrect for the
inflated false-positive rate, resulting in a reduction in
power. Here we describe a simple correction for multiple
testing of SNPs in LD with each other, on the basis of the
spectral decomposition (SpD) of matrices of pairwise LD
between SNPs. This method provides a useful alternative
to more computationally intensive permutation tests.

It has previously been shown that the collective cor-
relation among a set of variables can be measured by
the variance of the eigenvalues (ls) derived from a cor-
relation matrix (e.g., Cheverud et al. 1983, 2001). As
detailed by Cheverud (2001), high correlation among
variables leads to high ls. For example, if all variables
are completely correlated, the first l equals the number
of variables in the correlation matrix (M) and the rest
of the ls are zero. In this case, the variance of the ls is
at its maximum, and it is equal to the number of vari-
ables in the matrix. Conversely, if no correlation exists
among variables, all of the ls will be equal to one, and
the set of ls will have no variance. Hence, the variance
of the ls will range between zero, when all the variables
are independent, and M, where M is the total number
of variables included in the matrix. Therefore, the ratio
of observed eigenvalue variance, , to its max-Var (l )obs

imum (M) gives the proportional reduction in the num-
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Table 1

LD Matrix with Pairwise Correlations (D) and Eigenvalues (ls)

LOCUS

DISTANCE

FROM T5991C
(bp)

PAIRWISE CORRELATION

T5991C A5466C T3892C A240T T93C T1237C G2215A I/D G2350A 4656(CT)3/2

T5991C 0 7.84
A5466C 25 .99 1.60
T3892C 1,599 .83 .82 .24
A240T 5,251 .99 .98 .82 .21
T93C 5,398 .99 .98 .82 1.00 .08
T1237C 10,979 .59 .58 .69 .61 .61 .03
G2215A 15,108 �.61 �.60 �.71 �.63 �.63 �.86 .01
I/D 16,945 .61 .60 .71 .63 .63 .86 �1.00 .00
G2350A 17,372 .61 .60 .71 .63 .63 .86 �1.00 1.00 .00
4656(CT)3/2 26,796 .58 .57 .69 .60 .60 .81 �.94 .94 .94 .00

NOTE.—Pairwise correlations (D) are given below the diagonal, and the 10 eigenvalues (ls) associated with this matrix
are given along the diagonal (bold, italic).

ber of variables in a set, and the effective number of
variables (Meff) may be calculated as follows:

Var ( l )obsM p 1 � (M � 1) 1 � .eff ( )M

The common LD measure D is also the correlation
coefficient for a 2 # 2 table (Hill and Robertson 1968),
where

p p � p p11 22 12 21
D p 1/2(p p p p )1� 2� �1 �2

and the notation for estimated haplotype and marker
allele frequencies in the 2 # 2 table is as follows:

SNP 1

SNP 2

Allele 1 Allele 2 Total

Allele 1 p11 p12 p1�

Allele 2 p21 p22 p2�

Total p�1 p�2 1

Consequently, ls for the LD correlation (D) matrix may
be calculated by principal-components analysis or, more
generally, by spectral decomposition (SpD), and the ap-
proach of Cheverud (2001) may be applied to obtain
the effective number of independent SNPs (Meff) repre-
sented in the matrix.

Although Meff could easily be calculated using stan-
dard statistical packages and/or free software in the pub-
lic domain, we developed a user-friendly Web interface
(SNPSpD) because we believe a wide variety of research-
ers may have use for this approach, which simply re-
quires users to upload a MERLIN-format pedigree and

map file (Abecasis et al. 2002). The uploaded files are
run through a slightly altered version of Gonçalo Abe-
casis’s LDMAX program—part of the GOLD Command
Line Tools package [gold-1.1.0.tar.gz] (Abecasis and
Cookson 2000)—which uses the expectation-maximi-
zation–based approach of Excoffier and Slatkin (1995)
to estimate haplotype frequencies in case-control or fam-
ily data. Using these haplotype frequencies, LDMAX
calculates a number of pairwise LD statistics. A Perl
script then creates a matrix of pairwise D measures, from
which SNPSpD calculates ls by SpD, by use of the EI-
GEN function of R (v1.7.1) (R Development Core Team
2003). SNPSpD output includes the matrix of SNP-SNP
D measures, M, ls, , Meff, and a Šidák-correctedVar (l )obs

significance threshold (for Meff tests) required to keep the
type I error rate at 5%.

To investigate the performance of the Meff-Šidák cor-
rection we utilized two real data sets. The first data set
consisted of 10 highly associated SNPs, spanning ∼27
kb within the angiotensin-I converting enzyme (ACE)
gene (Keavney et al. 1998), and the second data set con-
sisted of 23 SNPs, spanning ∼794 kb within the T-cell
antigen receptor (TCR) a/d locus (Moffatt et al. 2000).
The results of SNPSpD were validated by permutation
(e.g., Westfall and Young 1993).

For the Keavney data set, 88 founders were utilized.
For each permutation, 44 founders were randomly se-
lected (without replacement) and labeled “cases,” and
the remaining 44 founders were labeled “controls.” This
selection process maintained each founder’s haplotype
and, hence, the LD information between each SNP. For
each permuted case-control sample (replicate), a x2 test
of homogeneity was used to compare genotype frequen-
cies between the permuted case and control populations
for each SNP. Thus, for each replicate, a total of 10 x2

values were produced. This process was repeated 50,000
times. Finally, the number of replicates in which at least
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Figure 1 Probability (Pr) of a type I error plotted against the number of SNPs (in chromosomal order) tested in the Keavney et al. (1998)
data. The graph shows the expected increase in the false-positive rate for completely independent SNPs [i.e., ] (thick dashed line),M1 � (1 � a)
by use of an Meff-Šidák correction [i.e., ] (thin dashed line), and from 50,000 permutations (thick solid line), for .Meff1 � (1 � a) a p 0.05

one SNP had a x2 value with [i.e., 2P � .05 x �
; df 2] were counted to estimate the probability5.991476

of a type I error. For example, the number of replicates
producing at least one x2 value �5.991476 were 2,235,
2,655, 4,100, 4,328, 4,328, 5,909, 7,042, 7,042, 7,042,
and 7,844 for the first 1, 2, 3, 4, 5, 6, 7, 8, 9, and all
10 SNPs (in chromosomal order), respectively.

Permutations were performed in R, utilizing the SAM-
PLE and CHISQ.TEST functions. Permuting 50,000
replicates took 26 min for the Keavney data set and 62
min for the Moffatt data set, whereas our SNPSpD
Web interface took only 12 s and 14 s, respectively.
Considering the fact that the R permutations were per-
formed on a 2.8 GHz Xeon (Linux v2.4.20) server with
exclusive CPU use, whereas the SNPSpD interface was
run on our 300 MHz Sun4 SPARC 10 (SunOS 5.8) Web
server, the SNPSpD approach was well over 100 times
faster than the R permutations.

The 10 SNPs in the Keavney data set produced an
Meff of 4.59, representative of high intermarker LD (see
table 1). Figure 1 shows the probability (Pr) of a type I
error plotted against the number of SNPs tested for the
Keavney et al. (1998) data set. Compared with the per-
muted rate, a Šidák correction ignoring intermarker LD
(standard-Šidák correction) would clearly overcorrect
for the inflated type I error rate, whereas the Meff-Šidák
rate, although slightly conservative in the presence of
higher order intermarker LD (i.e., very strong LD across
12 SNPs) provides a good approximation to the per-
muted rate. For example, in terms of the significance

threshold required to keep the type I error rate at 5%
if all 10 SNPs were individually tested for association
with ACE levels, the standard-Šidák [i.e., 1 � (1 �

], Meff-Šidák [i.e., ], and permuta-1/M 1/Meffa) 1 � (1 � a)
tion-based corrections would specify thresholds of P �

, , and , respectively..005 P � .011 P � .015
Analysis of the 23 SNPs in the Moffatt data set in-

dicated low levels of intermarker LD with an Meff of
22.53 and resulted in thresholds to keep the type I error
rate at 5% of , , and forP � .0022 P � .0023 P � .0028
the standard-Šidák, Meff-Šidák, and permutation-based
corrections, respectively.

It is worth noting that 150,000 permutations would be
required to avoid rounding highly significant P values
( ). Consequently, to correct for multiple testingP ! .00002
of SNPs in LD with each other, our SNPSpD approach
provides a simple and useful alternative to more com-
putationally intensive permutation tests. Furthermore, by
providing an estimate of the number of independent tests
(Meff), the SNPSpD approach allows researchers to apply
any flavor of multiplicity correction they prefer—for ex-
ample, the modified Bonferroni procedures of Holm
(1979), Hochberg (1988), and Hommel (1988) or the
more recently proposed false-discovery-rate (FDR) ap-
proach of Benjamini and Hochberg (1995).

Coincidentally, during the preparation of this manu-
script, Meng et al. (2003) described a method based on
the SpD of matrices of pairwise LD between markers to
select a subset of SNPs that optimize the information in
a genomic region. Although there are some parallels be-
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tween the approach of Meng et al. (2003) and that pre-
sented here, our study, unlike that of Meng et al. (2003),
not only is primarily concerned with the correction for
multiple testing when using multiple SNPs in LD with
each other but also provides important validation of the
use of an SpD-based approach to correct for such non-
independence. That said, to complete the usefulness of
our SNPSpD interface, we have extended analyses to
include results after varimax rotation. Specifically, we
report ls, proportions of variance, and principal-com-
ponent coefficients after varimax rotation (an orthog-
onal rotation method that minimizes the number of var-
iables that have high loadings on each factor, thus
simplifying the interpretation of the factors). Further-
more, we maximize interpretability of these results by
flagging the SNP(s) contributing the most to each rotated
factor (i.e., group of SNPs). These flagged SNPs may be
viewed as “haplotype-tagging SNPs.” Indeed, even in
data with strong LD, the rotated factors correspond well
with haplotypes obtained via traditional methods. For
example, the seven haplotypes reported in the Keavney
et al. (1998) study correspond to the seven factors pro-
duced by SNPSpD after varimax rotation.

Finally, because the user may then easily select SNPs to
represent either each factor, the factor(s) with the largest
Meff ls, or the factor(s) explaining a selected proportion
of variance, we believe many researchers will appreciate
the convenience of our SNPSpD Web interface.
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